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Abstract We have calculated the positions of the avoided
level crossings between (n + 2)s, np states and nd, k Stark
states in the Rydberg Stark states of the potassium atom with
principal quantum number n comprised between 12 and 17.
We have also studied the adiabatic electric field ionization
thresholds for the above Rydberg states. Both the ionization
thresholds and the positions of avoided crossings have been
calculated using the recently developed Stark-adapted quan-
tum defect orbital (SQDO) formalism. The presently reported
values appear to be in very good agreement with the available
theoretical and experimental data.

Keywords Stark effect · Non-hydrogen atoms · Rydberg
states · SQDO approach · Stark maps

1 Introduction

Very recently, we have formulated a new approach to deter-
mine atomic properties in the presence of an electric field,
the Stark quantum defect orbital (SQDO) method [1]. With
it, Stark maps and oscillator strengths within the external field
have been calculated for the alkali atoms, with the achieved
results being in excellent agreement with earlier experimental
[2] and theoretical [3] data.

The finite size of the ionic core has several consequences
in the properties of the Rydberg states of the alkali atoms.
In the absence of an electric field it leads to large quantum
defects for the low angular momentum states. In non-zero
field, levels which would cross in a hydrogen atom, couple in
the alkalis. Below the classical ionization limit this coupling
leads to avoided level crossings, and beyond it, to differences
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in the field ionization of the alkali atoms with respect to that
of hydrogen.

In the last few decades, field ionization has been stud-
ied both for the intrinsic interest in the process [4] and for
its potential applications, such as collision studies [5,6], or
as a highly selective detection technique [7,8]. However,
the intimately related avoided crossings in atoms other than
hydrogen have not been paid much attention in spite of being
of interest to both atomic theory [9] and experiment [10].
In experiment, level crossing and anticrossing spectroscopic
techniques have been used to investigate properties of atomic
Rydberg states such as the extent of the fine structure, Stark
and Zeeman shifts, transition probabilities and lifetimes. The
anticrossings of Stark levels also play an important role in
static field ionization [11,12] and in time-dependent microw-
ave field ionization [13,14]. Theoretically speaking, calcu-
lations of the positions of anticrossings are very important
to instruct the above experiments and to test the theoretical
approaches used to calculate the atomic spectra in electric
fields.

There are three commonly employed approaches in this
context: the introduction of a spherical core-coupling, as a
small perturbation, to hydrogenic parabolic states [15], the
diagonalization of a truncated Hamiltonian matrix [3], and
a quantum defect theory [16]. But, in practice, only matrix
diagonalization has been widely used for stable states. How-
ever, because the positions for anticrossings have a sensitive
dependence on wavefunctions [17], this kind of theoretical
calculation with numerical results is scarcely seen.

Encouraged by the accuracy of our previous study [1],
we have now applied the SQDO methodology to the calcu-
lation of level-crossing positions as well as field ionization
thresholds for the potassium atom in different high-energy
(Rydberg) states: the achieved results have been assessed
with the help of experimental and theoretical data available
in the literature.

The SQDO approach has been described in detail in
Menéndez et al. [1]. Thus, we shall only give a brief outline
of the present computational method in Sect. 2. In Sect. 3,
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field ionization thresholds and positions of avoided crossings
will be given and analyzed with the help of comparative data.

2 Computational method

In the presence of an external field and ignoring the rela-
tivistic effects, as they have been proven to have very little
influence in this context [3], the Hamiltonian for the potas-
sium atom has the following form:

H = Hat + Fz, (1)

where Hat is the field-free atomic Hamiltonian, F is the
strength of the applied field, and z is the coordinate of the elec-
tron along the direction of the field (the quantization axis).
Atomic units are used throughout.

For weak fields, the eigenvalues |α〉 for the atomic states
can be calculated through an expansion of a spherical alkali
state basis consisting of the bound eigenstates |n, l〉 of Hat,
where Hat |n, l〉 = En,l |n, l〉 (to simplify the notation, we
ignore the magnetic quantum number, ml , since it is a con-
stant). This expansion may be written as follows:

|α〉 =
∑

n,l
aα

n,l |n, l〉 , (2)

The interaction between the excited electron and the core
ion is represented by a model potential that yields accurate
quantum defects and satisfies the correct boundary conditions
at large and small distances. This potential, as proposed by
Simons [18] and Martín and Simons [19], is the starting point
of the quantum defect orbital (QDO) formalism [18–20].

A complete description of the QDO method has been
presented in previous papers [18–20], for which a relativistic
(RQDO) version was later formulated by Martín and Kar-
wowski [21], and succesfully applied to a number of atomic
problems [22].A summary of the most relevant features of the
non-relativistic QDO approach [18,19] follows. It is based on
the analytical solution of a one-electron Schrödinger equa-
tion, where the model potential includes a screening parame-
ter, which varies with the radial distance, and takes the form:

V (r) = λ(λ + 1) − l(l + 1)

2r2
− Znet

r
, (3)

where Znet is the effective nuclear charge on the outer elec-
tron (s). The screening aspects of the model potential are
determined by the parameter λ, which is also related to the
orbital quantum number, l, through the expression:

λ = l − δl + c. (4)

In Eq. 4, δl is the quantum defect of the state being consid-
ered, and “c” is an integer chosen, within a narrow range of
values, to ensure the normalization of the radial orbital, as
well as its correct nodal pattern. The number of radial nodes
is equal to n−l−1−c, where n is the principal quantum num-
ber. Due to the central field symmetry of the model potential,
the zero-field wavefunction has the following form:

�
QDO
nlm = R

QDO
nl (r)Ylm(θ, ϕ), (5)

where m is the magnetic quantum number. The radial part
R

QDO
nl (r) of the QDO is the analytical solution of Whittaker’s

second differential equation [23], and Yl,m(θ, ϕ) is a spher-
ical harmonic. In the presence of a homogeneous external
field, there is a mixing of the states that differ by one unit
in their orbital quantum numbers and possess the same mag-
netic quantum number. The mixings created by the field have
been dealt with through different approaches, as mentioned
in the Introduction. We have adopted the unperturbed QDO’s
as an adequate basis to represent the hamiltonian matrix in
the presence of the field. Hence, in this procedure, the energy
matrix has the following diagonal and off-diagonal terms,
respectively:

Hii = − 1

2n∗2
, (6)

Hij = Fδm,m′δl,l±1

〈
R

QDO
n,l |r| RQDO

n′,l±1

〉
〈Ylm| cos θ |Yl±1m〉 , (7)

where n∗ = n − δl is the effective quantum number.
At this point, it is important to notice that all the integrals

involved in the hamiltonian diagonalization process, written
in terms of the QDO’s, are closed-form analytical expres-
sions. This is, in our view, a particular advantage of our pro-
cedure from a computational point of view, as all calculations
are free from numerical errors and convergence problems.

Another important consideration to our approach is that

the off-diagonal elements of r ,
〈
R

QDO
n,l |r| RQDO

n′,l±1

〉
decrease

rapidly as the energy difference between the involved states
increases. Thus, only those states that are local in energy need
be included in the matrix diagonalization process to obtain
eigenvalues and eigenvectors in a particular energy region.
This ensures a finite character for the basis set, together with a
conservation of the analyticity of the original QDO approach.

After the hamiltonian diagonalization, each of the eigen-
vectors, to which we shall refer as SQDOs, is a linear combi-
nation of unperturbed QDO’s, as expressed by Eq. 2. In more
detail,

∣∣�SQDO
〉 =

∑

n

n−1∑

l=|m|
U

n1,n2
n,l (F )

∣∣∣�QDO
nlm

〉
, (8)

where U
n1n2
n,l (F ) are the elements of the field-dependent uni-

tary transformation matrix that projects the Stark states onto
the corresponding unperturbed states. The former are charac-
terized by the parabolic quantum numbers n1, n2 (the num-
bers n1 and n2 take on values comprised between 0 and n −
−1, and are related to the principal quantum number in the
form, n = n1 + n2 + |m| + 1).

3 Results and discussion

3.1 Position of anticrossings

Figure 1 depicts the presently found crossing positions for
the |ml| = 0, 1 states of potassium. A0 and B0 indicate,
respectively, the positions of the avoided crossings between
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Fig. 1 SQDO positions of the level crossings of potassium in the vicinity of n = 17, ml = 0. A0 and B0 indicate, respectively, the crossing
locations of the (17, 3) and (17, 4) Stark states with the 19s state (for notation see Sect. 3.1)

Fig. 2 SQDO positions of the level crossings of potassium in the vicinity of n = 17, ml = 1. A1, B1 and C1 indicate, respectively, the crossing
locations of the (17, 0), (17, 1) and (17, 2) Stark states with the 19p state

the 19s unperturbed state and the (17, 3) and (17, 4) Stark
states. The quantum numbers in the (nF , n1) notation here
employed for the Stark states are defined in the form, nF = n
– Int(δl) and n1 = nF − n2 − |ml| − 1, respectively. Int(δl) is
the integer nearest to the rounded value of δl , and n1, n2 are
parabolic quantum numbers. Similarly, in Fig. 2, where the
(nF , n2) notation is used. A1, B1 and C1 indicate the positions
of the crossings between the 19p state and the (17, 1), (17,
2) and (17, 3) Stark states, respectively.

The present calculations of avoided crossing positions
have been extended to other s and p states. Accordingly,
in Table 1, the locations of the avoided crossings, denoted
as A0 and B0 in Fig. 1, for the Stark states within the range
n = 13−17, i.e., 15s to 19s unperturbed states, are displayed.
In an analogous manner, the crossing locations A1, B1 and

C1 of Fig. 2 have now been collected for the p state-range n
= 12–17, i.e., the states comprised between the unperturbed
14p–19p states in Table 2, where the theoretical data reported
by Stoneman and Gallagher [10] and Li et al. [17], as well
as the measurements by Stoneman et al. [9], have also been
included. Of the two mentioned theoretical calculations, i.e.,
those of Stoneman and Gallagher [10], followed the meth-
odology proposed by Zimmerman et al. [3], where the radial
component of the basis functions is a product of generalized
Coulomb functions with non-integral n quantum numbers.
The radial integrals were numerically determined by using a
generic central symmetric potential. Li et al. [17] employed
the solutions of a model potential Hamiltonian developed by
He et al. [24] as basis functions for the Stark Hamiltonian
matrix.
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Table 1 Theoretical and observed positions for s-state anticrossings (in V cm−1)

s state n1 = 3, |ml | = 0 n1 = 4, |ml | = 0

SQDOa Expt.b Theor.c Theor.d SQDOa Expt.b Theor.c

15s 2312.8 3301.4
16s 1542.2 2084.0
17s 1061.8 1381.3
18s 751.4 752.7(8) 752.5 753.80 949.8 955.9
19s 545.6 545.7(8) 545.5 546.40 675.2 674.0(4) 676.5

aSQDO this work.
bStoneman et al. [9]
cLi et al. [17]
dStoneman and Gallagher [10]

Table 2 Theoretical and observed positions for p-state anticrossings (in Vcm−1)

p state n2 = 0, |ml | = 1 n2 = 1, |ml | = 1 n2 = 2, |ml | = 1

SQDOa Expt.b Theor.c SQDOa Theor.c SQDOa Theor.c

14p 4434.2 5473.7 6973.7
15p 2934.8 3565.2 4391.3
16p 2000.0 2386.4 2924.2
17p 1399.7 1652.4 1966.7
18p 1000.0 1168.4 1389.5
19p 731.6 737.7(13) 733.1 844.7 844.6 986.8 984.4

aSQDO this work
bStoneman et al. [9]
cLi et al. [17]

As it can be noticed by inspection of Tables 1 and 2, our
present results are in rather good accord with the observed
values. With the purpose of analyzing the trend followed by
the crossing positions, we have plotted, in Fig. 3, the log of
the field crossing locations A0 and B0 versus the log of the
effective quantum number of the state. The experimentally-
found crossing positions, A0 and B0, have been represented
by stars (∗), and the corresponding SQDO values are indi-
cated by solid circles (•). The present SQDO points appear
to be superimposed to the measurements, whenever these are
available, or, otherwise, they closely follow the trend estab-
lished by experiment (Fig. 3).

In a similar manner, the nF p (nF , 1), (nF , 2) y (nF , 3)
crossings, denoted as A1, B1 and C1, respectively, are dis-
played in Fig. 4. Again, the trend exhibited by the SQDO
crossing points is in rather good accord with that of the mea-
surements. In all cases (Figs. 3, 4), a linear trend is observed.
This suggests a dependence of the crossing locations on the
effective quantum number that, according to the logarith-
mic expressions consistent with the plots in Figs. 3 and 4
log(F ) = log(A) + x log(n∗), may be expressed in the fol-
lowing form,

F = A(n∗)x. (9)

Given that, for the hydrogen atom, the energy difference
between two adjacent states is 1/n3 and that the energy differ-
ence between the highest Stark state belonging to an n-level
and the lowest Stark state of the (n + 1)-manifold, is equal
to 3n2F , first-order Perturbation Theory [25] leads to the

following relationship between the n-value and the field
strength for the first crossing position:

F = 1

3
n−5. (10)

Consequently, as a first approximation, a value of x ≈ −5.0
in Eq. 9 might be assigned to potassium. A least-square fit-
ting of the data plotted in Figs. 3 and 4 yields values of x,
equal to −5.3 and −5.8, for A0 and B0 respectively, and to
−5.2, −5.4 and −5.7, for A1, B1 and C1, respectively. One
can also notice that as ni increases from i = 1 to i = 2,
the exponent becomes more negative and the crossings shift
towards greater field strengths.

3.2 Field ionization

The potential function for a single electron subject to both a
Coulomb field and an external field, F , applied along the z
axis, is:

VF (r) = −1

r
+ Fz. (11)

This potential exhibits a saddle point on the z axis at the value
Vsp = −2

√
F . In any state, an atom is ionized if its energy

is higher than Vsp. Thus, bound states are allowed only for
levels that satisfy:

W ≤ −2
√

F . (12)

However, Eq. 12 is only valid for states with zero angular
momentum [26]. For an electron with non-zero magnetic
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Fig. 3 Log-log plot of the anticrossing field locations for the 15s to 19s states versus the effective quantum number. Present SQDO calculations
are represented by solid circles. Experimental results are indicated by stars

Fig. 4 Log-log plot of the anticrossing field locations for the 19p state versus the effective quantum number. Present SQDO calculations are
represented by solid circles. Experimental results are indicated by stars

quantum number, ml , part of its kinetic energy is used in gen-
erating a momentum perpendicular to direction of the field.
However, according to Cooke et al. [27], this energy cannot be
used by the electron to escape the atom, and, consequently,
a higher field is neccessary to ionize the atom. When |ml|
happens to be much lower than n, the saddle point occurs at
a value of the potential given by Vsp = −2

√
F + |m| F 3/4 +

3
16m2F , and the region of stability is now the following:

W ≤ −2
√

F + |m| F 3/4 + 3

16
m2F. (13)

As mentioned in the Introduction, the Stark map of a non-
hydrogen atom is not simple because of the finite size of the
core. Accordingly, care must be taken in establishing the pas-
sage from low field to ionizing field values. It is well known

that the dynamics at each crossing are very well described
by the Landau–Zener theory [28], and the probability that a
given crossing is traversed adiabatically (i.e., that the system
undergoes a transition from a Stark state i to another state j)
or diabatically (i.e., the system remains in the same Stark state
i) depends on the matrix element that couples both states and
on the electric field slew rate. In this work we have consid-
ered that all the crossings are traversed adiabatically, so that
we can compare our results with the available experimental
data.

The ns and np states of potassium have large quantum
defects (δs = 2.178, δp = 1.712) and, as the field increases,
they initially encounter states belonging to neighboring Stark
manifolds of different n. In contrast, the nd states have a small
quantum defect (δd = 0.267), and the Stark states that they
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Table 3 Theoretical and observed field ionization thresholds in
KVcm−1 for states with |ml | = 0, 1

State |ml | = 0 |ml | = 1 |ml | = 0, 1

SQDOa SQDOa Expt.b

14s 19.17
15s 13.64
16s 10.09
17s 7.74 7.46, 7.58, 7.73, 7.88
18s 5.76 5.65, 5.83, 6.00, 6.12
19s 4.60 4.42, 4.55

14p 14.14 14.61
15p 10.62 10.99
16p 7.93 8.27
17p 6.15 6.34
18p 4.67 4.92 4.54, 4.76, 4.91
19p 3.73 3.86 3.62, 3.86

12d 19.80 20.66
13d 14.17 14.66
14d 10.31 10.67
15d 7.85 8.13 7.56, 7.81
16d 6.08 6.17 5.80, 5.96, 6.14
17d 4.69 4.85 4.60, 4.73, 4.91
18d 3.69 3.61, 3.71

aPresent calculations
bGallagher et al. [31]

encounter first have the same n value. Given that coupling
is strongest between states belonging to the same n mani-
fold, marked differences in behavior at the ensuing avoided
crossings happen. As a d state approaches its neighboring
manifold, strong mixing leads to the appearance of broad
avoided crossings. The s and p states couple less strongly to
their neighboring Stark states, resulting in a series of narrow
avoided crossings and, consequently, the adiabatically con-
nected states preserve much more of their initial character.
This leads to the fact that from the first avoided crossing to the
point where field ionization occurs, a smooth trajectory can-
not be considered even for states with ml = 0 as it happened
in Sodium [29,30]. As a consequence, ionization thresholds
are determined by following the trajectory of the different
states until they reach the classical limit given by Eq. 13, in
the corresponding SQDO Stark maps, assuming that all the
crossings occur adiabatically.

In contrast to the behavior found in the sodium atom [5],
the experimental avoided crossing locations for the s, p and
d states with ml = 0 and ml = 1 of potassium exhibit cer-
tain multiplicity, as shown in Table 3.According to Gallagher
et al. [31], this feature may be attributed to the existence of
spin-orbit coupling in potassium which, unlike in Na, leads
to a splitting of levels. This splitting is partly adiabatic in the
passage from low fields (where mj is well defined), to inter-
mediate fields (where ml and ms are good quantum numbers),
giving rise to a number of different pathways towards ioni-
zation.

As a further evidence of the above feature, it has been
experimentally [31] determined that atoms follow adiabatic
paths towards ionization. Thus, partially diabatic traversals of

Table 4 Theoretical and observed field ionization thresholds in
KVcm−1 for states with |ml | = 2

State |ml | = 2

SQDOa Expt.b

12d 21.46
13d 15.63
14d 11.23
15d 8.48 8.57 ± 0.26
16d 6.46 6.47 ± 0.19
17d 5.02 5.04 ± 0.15

aPresent calculations
bGallagher et al. [31]

intermediate-field crossings are not the source of the multiple
ionization thresholds.

The partly adiabatic passage, and its consequences on the
goodness of mj , prevents a distinction between the ioniza-
tion thresholds that correspond, respectively, to the ml = 0
and ml = 1 states. From the point of view of the theory,
establishing such a distinction would be a difficult and com-
plex task, given the large number of combinations that are
possible. Nevertheless, a comparison of the present results
(Table 3), obtained on the grounds of a field ionization that is
totally adiabatic, with the experimental values of Gallagher
et al. [31], reveals that, in all the cases considered, the latter
include a value that is very close in magnitude to the ones we
have calculated. That is, we might conclude that, accepting
the existence of a variety of pathways to ionization, one that
corresponds to an adiabatic ionization will always be found.
Moreover, for certain states, such as 18d and 19p, adiabatic
ionization appears to be the only possibility.

For the states of potassium characterized by ml = 2, the
present SQDO ionization thresholds are compared with the
measurements by Gallagher et al. [31] in Table 4. The lack
of multiplicity in the experimental thresholds allows us a
direct comparison with our calculated values, which reveals
an excellent accord with the experiment [31]. This suggests,
once more, the adequacy of the SQDO formalism to the anal-
ysis of field ionization.

4 Conclusions

Positions of avoided crossings and field ionization thresh-
olds have been determined for the Rydberg states of the
potassium atom. The SQDO procedure, which involves a
Hamiltonian diagonalization [1] with quantum defect orbitals
[18] as basis functions, has yielded results that agree rather
well with experimental data. This fact, added to our previous
studies [1], suggests the SQDO method to be a useful tool for
studying the behavior of atoms in the presence of an exter-
nal electric field. This approach also includes the capability
of identifiying different ionization pathways that cannot be
experimentally resolved.

The present calculations, however, ignore the spin-orbit
(SO) interaction. In this sense, the orbital magnetic quantum
number is taken as an approximately good quantum number.
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This may be justified on the grounds that the SO splitting
in potassium is small. Furthemore, the calculation by Ston-
eman et al. [9] showed that ml is indeed an approximately
good quantum number. Also, Gallagher et al. [31] came to
the conclusion that the effect of spin-orbit coupling in potas-
sium is just a blurring in the resolved |ml| thresholds, with
no consequences on the gross features of its field ioniza-
tion behavior. For these reasons, one would expect that the
errors derived from ignoring the SO interaction should be
small. Nonetheless, it is our intention, in the near future, to
include fine structure and other relevant relativistic effects in
our methodology by adopting, as a starting point, the RQDO
formulation [21], where the SO and other relevant relativistic
features are accounted for. A field-perturbed matrix diago-
nalization with RQDOs as basis functions may be expected
to deal properly with the influence of the SO splitting, and
other relativistic effects, on the anticrossings in the atom of
potassium, as well as on heavy and highly ionized atoms.
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